CuriouslyC 15 minutes ago
There are higher and lower leverage ways to do that, for instance reviewing tests and QA'ing software via use vs reading original code, but you can't get away from doing it entirely.
simianwords 3 minutes ago
As an example: imagine someone writing a data pipeline for training a machine learning model. Anyone who's done this knows that such a task involves lots data wrangling work like cleaning data, changing columns and some ad hoc stuff.
The only way to verify that things work is if the eventual model that is trained performs well.
In this case, scenario testing doesn't scale up because the feedback loop is extremely large - you have to wait until the model is trained and tested on hold out data.
Scenario testing clearly can not work on the smaller parts of the work like data wrangling.
codingdave an hour ago
At that point, outside of FAANG and their salaries, you are spending more on AI than you are on your humans. And they consider that level of spend to be a metric in and of itself. I'm kinda shocked the rest of the article just glossed over that one. It seems to be a breakdown of the entire vision of AI-driven coding. I mean, sure, the vendors would love it if everyone's salary budget just got shifted over to their revenue, but such a world is absolutely not my goal.
rileymichael 3 minutes ago
as a previous strongDM customer, i will never recommend their offering again. for a core security product, this is not the flex they think it is
japhyr an hour ago
This is one of the clearest takes I've seen that starts to get me to the point of possibly being able to trust code that I haven't reviewed.
The whole idea of letting an AI write tests was problematic because they're so focused on "success" that `assert True` becomes appealing. But orchestrating teams of agents that are incentivized to build, and teams of agents that are incentivized to find bugs and problematic tests, is fascinating.
I'm quite curious to see where this goes, and more motivated (and curious) than ever to start setting up my own agents.
Question for people who are already doing this: How much are you spending on tokens?
That line about spending $1,000 on tokens is pretty off-putting. For commercial teams it's an easy calculation. It's also depressing to think about what this means for open source. I sure can't afford to spend $1,000 supporting teams of agents to continue my open source work.
d0liver 24 minutes ago
This is still the same problem -- just pushed back a layer. Since the generated API is wrong, the QA outcomes will be wrong, too. Also, QAing things is an effective way to ensure that they work _after_ they've been reviewed by an engineer. A QA tester is not going to test for a vulnerability like a SQL injection unless they're guided by engineering judgement which comes from an understanding of the properties of the code under test.
The output is also essentially the definition of a derivative work, so it's probably not legally defensible (not that that's ever been a concern with LLMs).
wrs 33 minutes ago
CubsFan1060 42 minutes ago
I wonder what the security teams at companies that use StrongDM will think about this.
an hour ago
Comment deletedg947o 41 minutes ago
rhrthg an hour ago